Markscheme

May 2018

Physics

Standard level

Paper 2

This markscheme is the property of the International
Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Question			Answers	Notes	Total
1.	a	i	towards the centre «of the circle» / horizontally to the right \checkmark	Do not accept towards the centre of the bowl	1
1.	a	ii	downward vertical arrow of any length \checkmark arrow of correct length	Judge the length of the vertical arrow by eye. The construction lines are not required. A label is not required eg:	2
1.	a	iii	ALTERNATIVE 1 $\begin{aligned} & F=N \cos \theta \\ & m g=N \sin \theta \end{aligned}$ dividing/substituting to get result \checkmark ALTERNATIVE 2 right angle triangle drawn with F, N and $W / m g$ labelled angle correctly labelled and arrows on forces in correct directions correct use of trigonometry leading to the required relationship \checkmark	eg: $\begin{aligned} & \tan \theta=\frac{O}{A}=\frac{m g}{F} \\ & F=\frac{m g}{\tan \theta} \end{aligned}$	3

(continued...)
(Question 1 continued)

Question			Answers	Notes	Total
2.	a	i	a gas in which there are no intermolecular forces OR a gas that obeys the ideal gas law/all gas laws at all pressures, volumes and temperatures OR molecules have zero PE/only KE \checkmark	Accept atoms/particles.	1
2.	a	ii	$N=« \frac{p V}{k T}=\frac{5.3 \times 10^{5} \times 2.1 \times 10^{-4}}{1.38 \times 10^{-23} \times 310} » 2.6 \times 10^{22}$		1
2.	a	iii	«For one atom $U=\frac{3}{2} k T$ » $\frac{3}{2}$ ǎ 1.38 ǎ 10^{-23} ǎ $310 / 6.4$ ǎ $10^{-21 « \mathrm{~J} » ~} \checkmark$ $U=« 2.6 \times 10^{22} \times \frac{3}{2} \times 1.38 \times 10^{-23} \times 310 » 170 \ll \mathrm{~J} » \quad$	Allow ECF from (a)(ii) Award [2] for a bald correct answer Allow use of $U=\frac{3}{2} p V$	2
2.	b	i	$p_{2}=« 5.3 \times 10^{5} \times \frac{2.1 \times 10^{-4}}{6.8 \times 10^{-4}} » 1.6 \times 10^{5}$ «Pa»		1
2.	b	ii	«volume has increased and» average velocity/KE remains unchanged «so» molecules collide with the walls less frequently/longer time between collisions with the walls \checkmark «hence» rate of change of momentum at wall has decreased «and so pressure has decreased»	The idea of average must be included Decrease in number of collisions is not sufficient for MP2. Time must be included. Accept atoms/particles.	2 max

3.	a	i	the incident wave «from the speaker» and the reflected wave «from the closed end» superpose/combine/interfere \checkmark	Allow superimpose/add up Do not allow meet/interact	1
3.	a	ii	Horizontal arrow from X to the right \checkmark	MP2 is dependent on MP1 Ignore length of arrow	1
3.	a	iii	P at a node \checkmark		1
3.	a	iv	wavelength is $\lambda=<\frac{4 \times 0.30}{3}=» 0.40<\mathrm{m} » \downarrow$ $f=<\frac{340}{0.40}=» 850<\mathrm{Hz} » \downarrow$	Award [2] for a bald correct answer Allow ECF from MP1	2
3.	b	i	$\frac{\sin \theta_{C}}{340}=\frac{1}{1500} \checkmark$ $\theta_{C}=13 «^{\circ} » \checkmark$	Award [2] for a bald correct answer Award [2] for a bald answer of 13.1 Answer must be to 2/3 significant figures to award MP2 Allow 0.23 radians	2
3.	b	ii	correct orientation \checkmark greater separation \checkmark	Do not penalize the lengths of A and B in the water Do not penalize a wavefront for C if it is consistent with A and B MP1 must be awarded for MP2 to be awarded eg:	2

Question			Answers	Notes	Total
4.	a		the work done per unit charge \checkmark in moving charge from one terminal of a cell to the other / all the way round the circuit \checkmark	Award [1] for "energy per unit charge provided by the cell"/"power per unit current" Award [1] for "potential difference across the terminals of the cell when no current is flowing" Do not accept "potential difference across terminals of cell"	2
4.	b	i	the resistance is proportional to length / see 0.35 AND $1 « .00$ » so it equals $0.35 \times 80 \checkmark$ $\text { "= } 28 \Omega \text { " }$		2
4.	b	ii	current leaving 12 V cell is $\frac{12}{80}=0.15$ « A " OR $\begin{aligned} & E=\frac{12}{80} \times 28 \checkmark \\ & E=« 0.15 \times 28=» 4.2 « \mathrm{~V} » \end{aligned}$	Award [2] for a bald correct answer Allow a 1 sf answer of 4 if it comes from a calculation. Do not allow a bald answer of 4 « V » Allow ECF from incorrect current	2

Question			Answers	Notes	Total
5.	a	i	$\begin{aligned} & \text { Average height }=127 « m » \checkmark \\ & \text { Specific energy } «=\frac{m g \bar{h}}{m}=g \bar{h}=9.81 \times 127 »=1.2 \times 10^{3} \mathrm{Jkg}^{-1} \end{aligned}$	Unit is essential Allow $g=10$ gives $1.3 \times 10^{3} \mathrm{Jkg}^{-1}$ Allow ECF from 110 m $\left(1.1 \times 10^{3} \mathrm{Jkg}^{-1}\right)$ or 144 m $\left(1.4 \times 10^{3} \mathrm{Jkg}^{-1}\right)$	2
5.	a	ii	mass per second leaving dam is $\frac{1.2 \times 10^{5}}{60} \times 10^{3}=« 2.0 \times 10^{6} \mathrm{~kg} \mathrm{~s}^{-1} » \checkmark$ rate of decrease of GPE is $=2.0 \times 10^{6} \times 9.81 \times 127 \checkmark$ $=2.49 \times 10^{9} \text { «W / } 2.49<G W »$	Do not award ECF for the use of 110 m or 144 m Allow 2.4 GW if rounded value used from (a)(i) or 2.6GW if $g=10$ is used	3
5.	a	iii	efficiency is $\frac{1.8}{2.5}=» 0.72 / 72 \% \checkmark$		
5.	b		water is pumped back up at times when the demand for/price of electricity is low \checkmark		1

6.	a		«most of» the mass of the atom is confined within a very small volume/nucleus «all» the positive charge is confined within a very small volume/nucleus \checkmark electrons orbit the nucleus «in circular orbits»		2 max
6.	b	i	the energy needed to separate the nucleons of a nucleus OR energy released when a nucleus is formed from its nucleons \checkmark	Allow neutrons AND protons for nucleons Don't allow constituent parts	1
6.	b	ii	$\begin{aligned} & Q=106 \times 8.550-106 \times 8.521=3.07 « \mathrm{MeV} » \\ & « Q \approx 3 \mathrm{MeV} » \end{aligned}$		1
6.	C	i	line with arrow as shown labelled anti-neutrino/ $\bar{v} \checkmark$	Correct direction of the "arrow" is essential The line drawn must be "upwards" from the vertex in the time direction i.e. above the horizontal eg:	1
6.	C	ii	$V=W^{-} \checkmark$		1

