

Diploma Programme Programme du diplôme Programa del Diploma

Markscheme

May 2018

Physics

Standard level

Paper 2

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Question		on	Answers	Notes	Total
1.	а	i	towards the centre «of the circle» / horizontally to the right \checkmark	Do not accept towards the centre of the bowl	1
1.	a	ii	downward vertical arrow of any length ✓ arrow of correct length ✓	Judge the length of the vertical arrow by eye. The construction lines are not required. A label is not required eg:	2
1.	a	iii	ALTERNATIVE 1 $F = N\cos\theta \checkmark$ $mg = N\sin\theta \checkmark$ dividing/substituting to get result \checkmark ALTERNATIVE 2right angle triangle drawn with <i>F</i> , <i>N</i> and <i>W/mg</i> labelled \checkmark angle correctly labelled and arrows on forces incorrect directions \checkmark correct use of trigonometry leading to the requiredrelationship \checkmark	eg: N mg θ $tan\theta = \frac{O}{A} = \frac{mg}{F}$ $F = \frac{mg}{tan\theta}$	3

(Question 1 continued)

1.	b	$\frac{mg}{\tan\theta} = m\frac{v^2}{r} \checkmark$ $r = R\cos\theta \checkmark$ $v = \sqrt{\frac{gR\cos^2\theta}{\sin\theta}} / \sqrt{\frac{gR\cos\theta}{\tan\theta}} / \sqrt{\frac{9.81 \times 8.0\cos22}{\tan22}} \checkmark$	Award [4] for a bald correct answer Award [3] for an answer of 13.9/14 «ms ⁻¹ ». MP2 omitted	4
		$v = 13.4 / 13 \text{ sm s}^{-1} \text{ sm}^{-1}$		
1.	С	there is no force to balance the weight/N is horizontal \checkmark so no / it is not possible \checkmark	Must see correct justification to award MP2	2
1.	d	speed before collision $v = \sqrt{2gR} = 12.5 \text{ sms}^{-1} \text{ sms}^{-1}$ «from conservation of momentum» common speed after collision is $\frac{1}{2}$ initial speed $v_c = \frac{12.5}{2} = 6.25 \text{ ms}^{-1} \text{ sms}^{-1}$ $h = \sqrt[4]{\frac{v_c^2}{2a}} = \frac{6.25^2}{2 \times 9.81} \text{ sms}^{-1} \text{ sms}^{-1}$	Allow 12.5 from incorrect use of kinematics equations Award [3] for a bald correct answer Award [0] for mg (8) = 2 mgh leading to h = 4 m if done in one step. Allow ECF from MP1	3

Question		on	Answers	Notes	Total
2.	а	i	a gas in which there are no intermolecular forces OR a gas that obeys the ideal gas law/all gas laws at all pressures, volumes and temperatures	Accept atoms/particles.	1
			OR molecules have zero PE/only KE ✓		
2.	а	ii	$N = \left(\frac{pV}{kT}\right) = \frac{5.3 \times 10^5 \times 2.1 \times 10^{-4}}{1.38 \times 10^{-23} \times 310} \approx 2.6 \times 10^{22} \checkmark$		1
2.	а	iii	«For one atom $U = \frac{3}{2}kT$ » $\frac{3}{2}$ ă 1.38 ă 10 ⁻²³ ă 310 / 6.4 ă 10 ⁻²¹ «J» ✓ $U = (2.6 \times 10^{22} \times \frac{3}{2} \times 1.38 \times 10^{-23} \times 310 \times 170 $ «J» ✓	Allow ECF from (a)(ii) Award [2] for a bald correct answer Allow use of $U = \frac{3}{2}pV$	2
2.	b	i	$p_2 = (5.3 \times 10^5 \times \frac{2.1 \times 10^{-4}}{6.8 \times 10^{-4}}) \times 1.6 \times 10^5 \text{ (Pa)}$		1
2.	b	ii	 «volume has increased and» average velocity/KE remains unchanged ✓ «so» molecules collide with the walls less frequently/longer time between collisions with the walls ✓ «hence» rate of change of momentum at wall has decreased ✓ «and so pressure has decreased» 	The idea of average must be included Decrease in number of collisions is not sufficient for MP2. Time must be included. Accept atoms/particles.	2 max

3.	а	i	the incident wave «from the speaker» and the reflected wave «from the closed end» superpose/combine/interfere ✓	Allow superimpose/add up Do not allow meet/interact	1
3.	а	ii	Horizontal arrow from X to the right \checkmark	MP2 is dependent on MP1 Ignore length of arrow	1
3.	а	iii	P at a node ✓	displacement to the right pipe x displacement to the left	
3.	а	iv	wavelength is $\lambda = \left(\frac{4 \times 0.30}{3}\right) = 0.40 \text{ m} \text{ m}$ $f = \left(\frac{340}{0.40}\right) = 850 \text{ Hz}$	Award [2] for a bald correct answer Allow ECF from MP1	2
3.	b	i	$\frac{\sin \theta_c}{340} = \frac{1}{1500} \checkmark$ $\theta_c = 13 \ll * \checkmark$	Award [2] for a bald correct answer Award [2] for a bald answer of 13.1 Answer must be to 2/3 significant figures to award MP2 Allow 0.23 radians	2
3.	b	ii	correct orientation ✓ greater separation ✓	Do not penalize the lengths of A and B in the water Do not penalize a wavefront for C if it is consistent with A and B MP1 must be awarded for MP2 to be awarded eg: C B A air water	

Question		on	Answers	Notes	Total
4.	а		the work done per unit charge 🗸	Award [1] for "energy per unit charge provided by the cell"/"power per unit current"	
				Award [1] for "potential difference across the terminals of the cell when no current is flowing"	2
				Do not accept "potential difference across terminals of cell"	
			in moving charge from one terminal of a cell to the other / all the way round the circuit \checkmark		
4.	b	i	the resistance is proportional to length / see 0.35 AND 1«.00»✓		
			so it equals 0.35×80 ✓		2
			«=28Ω»		
4.	b	ii	current leaving 12 V cell is $\frac{12}{80} = 0.15 \text{ « A »}$	Award [2] for a bald correct answer	
			OR		
			$E = \frac{12}{80} \times 28 \checkmark$		2
			E = \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Allow a 1sf answer of 4 if it comes from a calculation.	
				Do not allow a bald answer of 4 «V»	
				Allow ECF from incorrect current	

Question		on	Answers	Notes	Total
5.	a	i	Average height = 127 «m» \checkmark Specific energy «= $\frac{mg\overline{h}}{m} = g\overline{h} = 9.81 \times 127$ » = 1.2×10^3 J kg ⁻¹ \checkmark	Unit is essential Allow $g = 10$ gives 1.3×10^3 J kg ⁻¹ Allow ECF from 110 m $(1.1 \times 10^3$ J kg ⁻¹) or 144 m $(1.4 \times 10^3$ J kg ⁻¹)	2
5.	а	ii	mass per second leaving dam is $\frac{1.2 \times 10^5}{60} \times 10^3 = (2.0 \times 10^6 \text{ kg s}^{-1}) \text{ s}$ rate of decrease of GPE is $= 2.0 \times 10^6 \times 9.81 \times 127 \text{ s}$ $= 2.49 \times 10^9 \text{ s} \text{ W} \text{ s} / 2.49 \text{ s} \text{ GW} \text{ s}$	Do not award ECF for the use of $110 m$ or $144 m$ Allow 2.4 GW if rounded value used from (a)(i) or 2.6 GW if $g = 10$ is used	3
5.	а	iii	efficiency is $\frac{1.8}{2.5} = 0.72 / 72\%$ √		
5.	b		water is pumped back up at times when the demand for/price of electricity is low \checkmark		1

6.	а		 «most of» the mass of the atom is confined within a very small volume/nucleus ✓ «all» the positive charge is confined within a very small volume/nucleus ✓ electrons orbit the nucleus «in circular orbits» ✓ 		2 max
6.	b	i	the energy needed to separate the nucleons of a nucleus OR energy released when a nucleus is formed from its nucleons ✓	Allow neutrons AND protons for nucleons Don't allow constituent parts	1
6.	b	ii	$Q = 106 \times 8.550 - 106 \times 8.521 = 3.07 \text{ (MeV)} \checkmark$ $(Q \approx 3 \text{ MeV })$		1
6.	C	i	line <u>with arrow</u> as shown labelled anti-neutrino/ \overline{v}	Correct direction of the "arrow" is essential The line drawn must be "upwards" from the vertex in the time direction i.e. above the horizontal eg: time time d quark	1
6.	С	ii	$V = W^{-} \checkmark$		1